Intrinsic repair of full-thickness articular cartilage defects in the axolotl salamander.
نویسندگان
چکیده
OBJECTIVE The ability to fully regenerate lost limbs has made the axolotl salamander (Ambystoma mexicanum) a valuable model for studies of tissue regeneration. The current experiments investigate the ability of these vertebrates to repair large articular cartilage defects and restore normal hyaline cartilage and joint structure independent of limb amputation. METHODS Full-thickness articular cartilage defects were made by resection of the medial femoral condyle to the level of the metaphysis. At 0, 2 days, 1, 2, 3, 4, 6, 8, 12, 18, 24, 36 and 48 weeks post-surgery, the repair process was analyzed on H&E and Safranin-O stained 7 μm tissue sections. Symmetric Kullback-Leibler (SKL) divergences were used to assess proteoglycan staining intensities. Immunohistochemistry was performed for collagen types I and II. RESULTS A fibrous "interzone-like" tissue occupies the intraarticular space of the axolotl femorotibial joint and no evidence of joint cavitation was observed. By 4 weeks post-surgery, cells within the defect site exhibited morphological similarities to those of the interzone-like tissue. At 24 weeks, joint structure and cartilaginous tissue repair were confirmed by immunohistochemistry for collagen types I and II. Quantitation of Safranin-O staining indicated restoration of proteoglycan content by 18 weeks. CONCLUSIONS The axolotl femorotibial joint has morphological similarities to the developing mammalian diarthrodial joint. Cells in the intraarticular space may be homologous to the interzone tissue and contribute to intrinsic repair of full-thickness articular cartilage defects. Taken together, these results suggest that the axolotl may serve as a valuable model for the investigation of cellular and molecular mechanisms that achieve full articular cartilage repair.
منابع مشابه
Regeneration of Limb Joints in the Axolotl (Ambystoma mexicanum)
In spite of numerous investigations of regenerating salamander limbs, little attention has been paid to the details of how joints are reformed. An understanding of the process and mechanisms of joint regeneration in this model system for tetrapod limb regeneration would provide insights into developing novel therapies for inducing joint regeneration in humans. To this end, we have used the axol...
متن کاملEffects of excimer laser on healing of articular cartilage in rabbits.
This study examined healing of 1.0 mm diameter defects in rabbit knee articular cartilage for as long as 14 weeks after creation of the defects by either laser or drilling. The purpose of the research was to determine the effects of laser debridement of cartilage on the intrinsic biomechanical properties of the repair tissue. We therefore imitated chondral shaving and subchondral abrasion of ca...
متن کاملHealing of full-thickness defects of the articular cartilage in rabbits using fibroblast growth factor-2 and a fibrin sealant.
We have investigated in vitro the release kinetics and bioactivity of fibroblast growth factor-2 (FGF-2) released from a carrier of fibrin sealant. In order to evaluate the effects of the FGF-2 delivery mechanism on the repair of articular cartilage, full-thickness cylindrical defects, 5 mm in diameter and 4 mm in depth, which were too large to undergo spontaneous repair, were created in the fe...
متن کاملEffect of tenascin-C on the repair of full-thickness osteochondral defects of articular cartilage in rabbits.
The purpose of this study was to examine the effect of tenascin-C (TNC) on the repair of full-thickness osteochondral defects of articular cartilage in vivo. We used a gellan-gellan-sulfate sponge (Gellan-GS) to maintain a TNC-rich environment in the cartilage defects. We implanted Gellan-GS soaked in PBS only (Group 1), Gellan-GS soaked in 10 µg/ml of TNC (Group 2), and Gellan-GS soaked in 100...
متن کاملComparison of cartilage self repairs and repairs with costal and articular chondrocyte transplantation in treatment of cartilage defects in rats.
In our experiment, we tried to assess the potential of repair of full-thickness defects in articular cartilages of rabbit femurs. An artificially made, full-thickness defect in the rabbit's femoral patellar groove was created. The defects were divided into six groups. The reparative tissue was evaluated by macroscopic, histological, and immunohistochemical examinations. The reparative tissues i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Osteoarthritis and cartilage
دوره 19 2 شماره
صفحات -
تاریخ انتشار 2011